Educational Achievement and Religiosity

research

educational achievement

I outlined a somewhat speculative argument that would support a prediction that increased religiosity at the social level should have a negative effect on educational achievement here, where I suggested that

Educators surrounded by cultures with higher religiosity—and regardless of their own personal religious orientations—will simply have greater exposure to concerns about moral and spiritual harm that can be wrought by science, in addition to the benefits it can bring.

Such weakened confidence in science may not only directly water down the content of instruction in both science and mathematics—by, for example, diluting science content antagonistic to religious beliefs in published standards and curriculum guides—but could also represent an environment in which it is seen as inartful or even taboo for educators of any stripe to lean on scientific findings and perspectives in order to improve educational outcomes (because nurturing children may be seen to be the provenance of more spiritual and less scientific approaches). Both of these effects, one social, one policy-level, could have a negative effect on achievement.

A new paper, coauthored by renowned evolutionary psychologist David Geary, shows that religiosity at a national level does indeed have a strong negative effect on achievement (r = –0.72, p < 0.001). Yet, Stoet and Geary’s research suggests a different, simpler mechanism at work than the mechanisms I suggested above to explain the connection between religiosity and math and science educational achievement. This mechanism is displacement.

The Displacement Hypothesis

It’s a bit much to give this hypothesis its own section heading—not that it isn’t important, necessarily. It’s just self-explanatory. Religiosity may be correlated with lower educational achievement because people have a finite amount of time and attention, and spending time learning about religion or engaging in religious activities necessarily takes time away from learning math and science.

It is not necessarily the content of the religious beliefs that might influence educational growth (or lack thereof), but that investment of intellectual abilities that support educational development are displaced by other (religious) activities (displacement hypothesis). This follows from Cattell’s (1987) investment theory, with investment shifting from secular education to religious materials rather than shifts from one secular domain (e.g., mathematics) to another (e.g., literature). This hypothesis might help to explain part of the variation in educational performance broadly (i.e., across academic domains), not just in science literacy.

One reason the displacement hypothesis makes sense is that religiosity is as powerfully negatively correlated with achievement in mathematics as it is with science achievement.

The Scattering Hypothesis

But certainly a drawback of the displacement hypothesis is that there are activities we engage in—as unrelated to mathematics and science as religion is—which don’t, as far as we know, correlate strongly negatively with achievement. Physical exercise, for goodness’ sake, is one example of such an activity. Perhaps there is something especially toxic about religiosity as the displacer which deserves our attention.

Maybe religiosity (or, better, a perspective which allows for supernatural explanations or, indeed, unexplainable phenomena) has a diluent or scattering effect on learning. If so, here are two analogies for how that might work:

  • Consider object permanence. Prior to developing the understanding that objects continue to exist once they are out of view, children will almost immediately lose interest in an object that is deliberately hidden from them, even if they were attending to it just moments earlier. Why? Because it is possible (to them) that the object has vanished from existence when you move it out of their view. If it were possible for a 4-month-old to crawl up and look behind the sofa to see that grandma had actually disappeared during a game of peek-a-boo, they would have nothing to wonder about. The disappearance was possible, so why shouldn’t it happen? This possibility is gone once you develop object permanence.
  • Perhaps more relevant, not to mention ominous: climate change. It is well known that religiosity and acceptance of the theory of evolution are negatively correlated. And it turns out there is a strong positive link between evolution denialism and climate-change denialism. How might religiosity support both of these denialisms? Here we can benefit from substituting for ‘religiosity’ some degree of subscription to supernatural explanations: If the universe was made by a deity for us, then how can we be intruders in it, and how could we—by means that do not transgress the laws of this deity—defile it? This seems a perfectly reasonable use of logic, once you have allowed for the possibility of an omniscient benevolence who gifted your species the entire planet you live on.

The two of these together seem pretty bizarre. But I’m sure you catch the drift. In each case, I would argue that the constriction of possibilities—to those supported by naturalistic explanations rather than supernatural ones—is actually a good thing. You are less likely to be prodded to explain how the natural world works when supernatural reasons are perfectly acceptable. And supernaturalism can prevent you from fully appreciating your own existence and the effects it has on the natural world. Under supernaturalism, you can still engage in logical arguments and intellectual activity. You can write books and go to seminars. Your neurons could be firing. But if you’re not thinking about reality, it doesn’t do you any good.

Religiosity or supernaturalism does not make you dumb. But perhaps it has the broader effect of making it more difficult to fasten minds onto reality, as it fills the solution space with only those possibilities that have little bearing on the real world we live in. This would certainly show up in measures of educational achievement.


ResearchBlogging.org
Stoet, G., & Geary, D. (2017). Students in countries with higher levels of religiosity perform lower in science and mathematics Intelligence DOI: 10.1016/j.intell.2017.03.001

Published by

Josh Fisher

Instructional designer and editor for K-12 mathematics. My research interests center mostly around mathematics education.

Leave a Reply